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Abstract. A stochastic approach based on the Master equation is proposed to describe the process of
formation and growth of car clusters in traffic flow in analogy to usual aggregation phenomena such as the
formation of liquid droplets in supersaturated vapour. By this method a coexistence of many clusters on a
one-lane circular road has been investigated. Analytical equations have been derived for calculation of the
stationary cluster distribution and related physical quantities of an infinitely large system of interacting
cars. If the probability per time (or p) to decelerate a car without an obvious reason tends to zero in an
infinitely large system, our multi-cluster model behaves essentially in the same way as a one-cluster model
studied before. In particular, there are three different regimes of traffic flow (free jet of cars, coexisting phase
of jams and isolated cars, highly viscous heavy traffic) and two phase transitions between them. At finite
values of p the behaviour is qualitatively different, i.e., there is no sharp phase transition between the free
jet of cars and the coexisting phase. Nevertheless, a jump-like phase transition between the coexisting phase
and the highly viscous heavy traffic takes place both at p→ 0 and at a finite p. Monte-Carlo simulations
have been performed for finite roads showing a time evolution of the system into the stationary state.
In distinction to the one-cluster model, a remarkable increasing of the average flux has been detected at
certain densities of cars due to finite-size effects.

PACS. 02.50.Ey Stochastic processes – 05.70.Fh Phase transitions: general studies –
89.40.+k Transportation

1 Introduction

The formation and growth of clusters is a widely known
phenomenon in physics. We mention a formation of liquid
droplets in a supersaturated vapour [1]. The formation of
car clusters (jams) at overcritical densities in traffic flow is
an analogous phenomenon in sense that cars can be con-
sidered as interacting particles [2], and the clustering pro-
cess can be described by similar equations. In particular,
the probability that the system has a given cluster distri-
bution at a time t in both cases can be described by the
stochastic Master equation. The transition probabilities
depend on the specific physical model under consideration.
It should be noted that the traffic flow and spontaneous
emergence of car clusters has been studied by different
authors (see e.g. [3–8]) based on different models and ap-
proaches. In spite of the complexity of real traffic [9], we
believe that some general features, such as spontaneous
formation of jams and some general scaling properties of
traffic flow [10,11] exist, which can be described and un-
derstood by relatively simple models. Especially, particle
hopping models and, in particular, the cellular automaton
model developed by Nagel and Schreckenberg [10,12–16]
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historically plays an important role in the development
of traffic flow theory and in practical traffic engineering.
The Nagel-Schreckenberg model is still of current interest
and recently has been revisited [17]. The deterministic car
following theory [18–20] also gives support to understand-
ing of real traffic. Our purpose is to extend and improve
the one-cluster stochastic model of one-lane circular road,
proposed and developed in references [21–23], allowing a
coexistence of many clusters. It has been shown and dis-
cussed in reference [22] that the proposed approach allows
to describe and interpret the experimental traffic data re-
flected in the fundamental flux-density diagram. In this
paper the main attention is paid to the qualitative changes
in the behavior of interacting cars (in particular, the exis-
tence and the character of phase transitions) which can be
observed in the actually considered multi-cluster model, as
compared to the one-cluster model studied before.

2 The model

Here we consider a model of traffic flow on a one-lane
circular road of length L. For convenience, the length
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L is chosen

L = M(`+∆xclust), (1)

where ` is the effective length of a car and ` + ∆xclust is
the distance between the front bumpers of two neighbour-
ing cars in a jam (car cluster), as defined in our previous
work [22], and M is a natural number. The distance be-
tween the front bumpers of two neighbouring cars, in gen-
eral, is `+∆x. The total number of cars N is eliminated
by N ≤ M , where N = M corresponds to the marginal
case when the jam with car density %clust = 1/(`+∆xclust)
exists over the whole road. Similarly as in reference [22],
we have used the optimal velocity approximation to de-
scribe the behaviour of individual drivers depending on
the local density of cars or on headway ∆x. The maximal
velocity of each car is vmax. The desired (optimal) veloc-
ity vopt, depending on the distance between two cars ∆x,
is given in dimensionless variables wopt = vopt/vmax and
∆y = ∆x/` by the formula

wopt(∆y) =
(∆y)2

d2 + (∆y)2
, (2)

where the parameter d = D/` is the interaction dis-
tance. D is the distance between two cars corresponding
to the velocity value vmax/2. In distinction to our previous
model [21–23], where one car cluster existed at any time,
here we consider a more realistic multi-cluster case where
the total number of clusters of congested cars (jams)

Ncl =
N∑
k=1

Nk (3)

may be varied. Nk is the number of clusters of size k, i.e.,
those consisting of k cars. In principle, we allow an ab-
sence of any congestion corresponding to Nk = 0 for all
k. Some stochastic event or perturbation of the free traf-
fic flow is necessary to initiate formation of a new clus-
ter. Such stochastic events are simulated assuming that
any car belonging to the free flow can reduce its velocity
to vopt(∆xclust), i.e., become a single congested car or a
cluster of size k = 1. The probability of such an event per
time for a given free car is w∗+. A cluster of size 1 appears
also when a two-car cluster is reduced by one car. In this
case cluster with k = 1 is a car which still have not ac-
celerated after this event. In any case, cluster of size 1 in
our model is defined as a single car moving with the ve-
locity vopt(∆xclust). In such a way, the total number n of
congested cars is

n =
N∑
k=1

kNk , (4)

and the number of free cars is nfree = N − n. According
to our definition, the length of the cluster of size k is `k+
(k − 1)∆xclust, which means that the total length of the
congested part of the road is

Lclust = `n+ (n−Ncl)∆xclust . (5)

Thus, with account for equation (1), the average distance
∆xfree = `∆yfree between two cars outside the jam (or free
cars) distributed over the free part of the road with length
Lfree = L− Lclust is given by

∆yfree(n,Ncl) =
M −N + (M − n+Ncl)∆yclust

N − n+Ncl
(6)

where ∆yclust = ∆xclust/`. In the particular one-cluster
case Ncl = 1 equations (5) and (6) agree with correspond-
ing formulae in reference [22].

The traffic flow is described as a stochastic process
where adding a vehicle to a given car cluster (any of Ncl

clusters) is characterized by a transition frequency (at-
tachment probability per time unit) w+(n,Ncl) and the
opposite process by a frequency w−(n,Ncl). The stochas-
tic variables are Nk with k = 1, 2, ..., N , whereas the tran-
sition frequencies depend on n andNcl, as discussed below.
We have assumed that the free cars are distributed uni-
formly over the spacings between clusters, i.e., all these
parts of the free road are characterised by the same mean
headway ∆yfree(n,Ncl) defined by equation (6), which al-
lows us to use the ansatz for transition frequencies pro-
posed in reference [22]. However, at nfree < Ncl the ansatz
for w+ is corrected, taking into account that some of Ncl

parts of the free road contain no cars. We have introduced
the probability, represented by theta (step) function,

R(n,Ncl) = 1 + (nfree/Ncl − 1) θ(Ncl − nfree), (7)

that at a given time moment there exists at least one car
in the considered part of the free road, assuming that the
distribution of free cars is maximally uniform. In such a
way, our ansatz for the transition frequencies reads

w+(n,Ncl) =
b

τ

wopt(∆yfree(n,Ncl))− wopt(∆yclust)
∆yfree(n,Ncl)−∆yclust

× R(n,Ncl) (8)
w−(n,Ncl) = 1/τ = const. , (9)

where b = vmaxτ/` denotes a dimensionless parameter,
and τ is a time constant which can be interpreted as
the waiting time for the escape (detachment) of the first
car out of the jam into free flow [22]. Equations (7) and
(8) ensure that w+(N,Ncl) = 0, therefore n cannot be-
come larger than N . We have excluded any merging and
splitting of clusters which is usually also done to describe
aggregation in supersaturated systems like droplets [1].
Because in our model ∆yclust is strictly constant, such pro-
cesses are impossible due to purely geometrical aspects.

The stochastic variables Nk may be considered
as components of an N -dimensional vector N =
(N1, N2, . . . , NN ) or q =

∑
kNkqk where qk is a unit

vector the i-th component of which is δi,k. In such a nota-
tion, the stochastic Master equation describing the evolu-
tion of the probability distribution function P (q, T ) with
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the dimensionless time T = t/τ reads

1
τ

dP (q, T )
dT

= (N − n+ 1)w∗+ P (q− q1, T )

+
N∑
k=2

(Nk−1 + 1)w+(n− 1, Ncl)P (q + qk−1 − qk, T )

+ (N1 + 1)w−(n+ 1, Ncl + 1)P (q + q1, T )

+
N−1∑
k=1

(Nk+1 + 1)w−(n+ 1, N(cl)P (q + qk+1 − qk, T )

−
[
(N − n)w∗+ +Ncl (w+(n,Ncl)

+ w−(n,Ncl))] P (q, T ) . (10)

The stochastic process has several reaction chan-
nels, written on r.h.s. of equation (10), which
are transitions changing the cluster distribu-
tion from N = (N1, . . . , Nk−1, Nk, . . . , NN) to
N′ = (N1 + 1, . . . , Nk−1 + 1, Nk − 1, . . . , NN) and
vice versa (valid for k > 2). The formation and dissolu-
tion of a pre-cluster (jam of size k = 1) and a dimer (jam
of two vehicles) have also to be considered. Generally
equation (10) describes condensation and evaporation
of car clusters due to stochastic one-step processes as
attachment or detachment of one car only.

3 Stationary cluster distribution
for an infinitely large system

The stationary cluster distribution for an infinitely large
system (M → ∞, N → ∞) is derived in this section
based on the stationary solution P (q) = lim

T→∞
P (q, T ) of

the Master equation (10) corresponding to the condition

dP (q, T )
dT

= 0. (11)

When the stationary cluster distribution is reached in an
infinitely large system, the relative fluctuation of the num-
ber Nk of clusters of a given size k is negligible, i.e., the
density C(k) = 〈Nk/M〉 of clusters consisting of k cars is

C(k) = M−1
∑
i

i Pk(i) = N∗k/M (12)

where N∗k is the most probable value of Nk and Pk(i) =
M−1δ(i/M − N∗k/M) is the stationary probability that
there exists i clusters of size k. The function Pk(i) can
be obtained from P (q) by a summation over all possi-
ble values of Nm (q =

∑
mNmqm) except the value of

Nk which is fixed Nk = i. In such a way, on the basis
of equations (10), (11), and (12) we obtain the following
equations

dC(0)/dT = −pC(0) + C(1) = 0
dC(k)/dT = [Q+ δk,1(p−Q)]C(k − 1)

− (1 +Q)C(k) + C(k + 1) = 0 : k ≥ 1 (13)

where C(0) = nfree/M , p = τw∗+, and Q = τw+(n,Ncl).
We call p the stochastic perturbation parameter. This is a
probability per dimensionless time unit for a given free car
to decelerate (become a single congested car) without an
obvious reason. Q is constant at given values of p and c,
where c is the dimensionless total density of cars defined
by c = N`/L = cclustN/M where cclust = 1/(1 +∆yclust).
An unambiguous relation

C(k) = C(0) pQk−1 (14)

follows from equations (13) for k ≥ 1. Q < 1 corresponds
to a physical solution because at Q ≥ 1 sums (3) and
(4) diverge. Equation (14) is not valid at k ∼ M since
the density function C(k) is meaningful at large Nk only.
In this aspect, the question arises about the existence of
one or several clusters of size k ∼M . Let us assume that
there exists such a cluster of size k = µM with µ > 0 at
some time moment T . The time evolution of this cluster
is described by an averaged equation

d 〈µ〉 /dT = M−1 [Q(T )− 1], (15)

where the averaging of number of cars joining and leaving
the cluster is performed over time intervals much larger
than τ , but small enough to ensure that the relative vari-
ation of 〈µ〉 during a time interval is small. Since Q < 1
corresponds to the stationary cluster distribution, stable
clusters with µ 6= 0 at M → ∞ cannot exist at T → ∞,
i.e., they dissolve, as evident from equation (15).

The value of C(0) in (14), as well as the relative part
of the congested cars r = n/N and the average cluster size
s = rN/Ncl can be easily calculated from equations (3),
(4) and (14) with account for the relation N = n+ nfree.
This yields

C(0) =
c

cclust

(1−Q)2

p+ (1−Q)2
, (16)

r =
p

p+ (1−Q)2
, (17)

s =
r (1−Q)
p (1− r) =

1
1−Q · (18)

Since the smallest cluster size is 1, s ≥ 1 always holds.
It follows from equation (18) that nfree/Ncl = (1−Q)/p.
This quantity is larger than 1 for reasonably small values
of p considered here, which means that R in equation (7)
is equal to 1 and transition probability equation (8)
reduces to

Q = b
wopt(∆yfree)− wopt(∆yclust)

∆yfree −∆yclust
(19)

with

∆yfree =
(1− c)s− cr(s− 1)∆yclust

cs− cr(s − 1)
, (20)

as consistent with equation (6) and the definitions of c, r,
and s. Equations (17) to (20) together with equation (2)
can be solved numerically, and this represents the solution
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of our model in the thermodynamic limit depending on
the total dimensionless density of cars c and the stochas-
tic perturbation parameter p. In a real situation drivers
stop or randomly decelerate their cars without an obvious
reason very seldom, which means that p = τw∗+ is small,
and, therefore, the asymptotic solution at p→ 0 is of spe-
cial interest. Although, stable car clusters with k ∼M do
not exist, behaviour of the system in the limit lim

p→0
lim
M→∞

is similar as in the case of one-cluster model considered
in references [21,22] where one macroscopic cluster of a
size proportional to length of road L appeared at certain
densities c. This is true since the average size of spon-
taneously appearing clusters diverges at lim

p→0
lim
M→∞

in our

model, too. The above limit means that the solution is
found at M →∞ for any given p, which then is tended to
zero. In this case s → ∞ is the only physical solution at
densities c1 < c < min{c2, cclust} where

c1,2 = 1/(1 +∆y1,2) ,

∆y1,2 = B ±
√
B2 − d2 + 2B∆yclust, (21)

with

B =
b d2

2[d2 + (∆yclust)2]
· (22)

Note that ∆y1,2 are roots of the equation Q = 1 solved
with respect to ∆yfree. The discriminant is supposed to be
positive, and this is the condition (cf. Eq. (18) in Ref. [22])
at which formation of large clusters is possible, in princi-
ple. Thus, the asymptotic solution, describing the situa-
tion where large clusters coexist with parts of road with
free traffic, reads

s ' 1/
√
ap→∞ ; r ' 1/(1 + a)

Q ' 1−√ap→ 1 ; ∆yfree ' ∆y1 , (23)

where

a =
1− c(1 +∆yclust)
c(1 +∆y1)− 1

· (24)

Such an asymptotic solution exists within c1 < c < cclust,
whereas at c1 < c < min{c2, cclust} this is the only phys-
ical solution. c1 is the critical density, the same as in ref-
erence [22], at which homogeneous traffic flow becomes
unstable and large clusters emerge if c is increased. Note
that a diverges if the critical density c1 is approached from
larger c values. From equations (21) and (24) we see that
1/a and, consequently, r tends to zero linearly. This means
that the critical behaviour of the order parameter r is
described by the critical exponent β = 1. A similar re-
sult has been obtained in the Nagel-Schreckenberg traffic
flow model [15]. At c < c1 the only physical solution at
lim
p→0

lim
M→∞

is that corresponding to the homogeneous traf-

fic flow, i.e.,

Q ' 2B[c−1 − 1 +∆yclust]
d2 + (c−1 − 1)2

; s =
1

1−Q ;

r ' p/(1−Q)2 → 0 ; ∆yfree ' c−1 − 1 . (25)

Such a solution has a physical meaning at Q < 1 which
holds not only at c < c1, but also at c2 < c < cclust if
c2 < cclust. In this case there are two physically meaningful
asymptotic solutions (23) and (25) within c2 < c < cclust.
The question is which of these solutions represents the
stable state of the system. Following an analogy with the
one-cluster model, there should be a jump between the
states described by these solutions at some density c2 <
cjump < cclust.

4 The fundamental diagram

One of the most important characteristics of traffic flow
is the fundamental diagram showing the flux J of cars as
function of the total density % = N/L. According to the
definition given in references [21,22], we have

J = lim
t→∞

1
t

t∫
0

%(x, t′)v(x, t′) dt′ , (26)

where %(x, t′) and v(x, t′) are local density and local ve-
locity depending on coordinate x and time t′. Since equa-
tion (26) holds for any coordinate x, we can perform an
averaging over x replacing %(x, t′)v(x, t′) by the average
value

〈%(x, t′)v(x, t′)〉x =
Lclust(t′)

L
vopt(∆xclust) %clust(t′)

+
Lfree(t′)

L
vopt(∆xfree(t′)) %free(t′) (27)

where %clust(t′) = n(t′)/Lclust(t′) is the average density
of cars in clusters, and %free(t′) = (N − n(t′))/Lfree(t′)
is the average density of cars over the free part of the
road at a time moment t′. In this case Lclust(t′), Lfree(t′),
and ∆xfree(t′) = `∆yfree(t′) are determined according to
equations (5) and (6) where n and Ncl are the current
stochastic values of these quantities at a time moment t′.
Taking into account these relations (as well as the defini-
tions c = `N/L and r = n/N), from (26) we obtain

j = b c
∑
n,Ncl

P (n,Ncl) [r(n)wopt(∆yclust)

+(1− r(n))wopt(∆yfree(n,Ncl))] (28)

where j = Jτ is the dimensionless flux, b = τvmax/`, and
P (n,Ncl) is the part of the total time during which the
number of congested cars is n and the number of clusters
is Ncl. Another interpretation of quantity P (n,Ncl) is the
stationary probability to find the system in a state with
values of the stochastic variables Nk corresponding to the
given n and Ncl. In the thermodynamic limit M → ∞
the probability P (n,Ncl) has a sharp δ-function like max-
imum at the most probable values of n and Ncl, therefore
equation (28) reduces to

j(c) = b c [r wopt(∆yclust) + (1− r)wopt(∆yfree)] (29)
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where quantities r and ∆yfree are given by equations (17)
and (20). In the limit lim

p→0
lim
M→∞

the flux

j(c) =
bc(1− c)2

(cd)2 + (1− c)2
(30)

corresponds to the solution (25) without congestions, and

j(c) = 1− c+ c(bwopt(∆yclust)−∆yclust) (31)

holds for the cluster-phase solution given by equation (23).
These equations and their illustration in the fundamental
diagram (see Fig. 5) agree with the previously obtained
results for the one-cluster model [21,22] and represent an
exact analytical solution of our model in the considered
limit. The question is merely about the density cjump at
which the jump in j(c) from one solution to the other
solution should take place.

5 Results and discussion

Here we discuss the results for an infinite system obtained
on the basis of equations derived in previous sections and
compare them with the results of Monte-Carlo (MC) sim-
ulation of stochastic trajectories for finite systems. The
same set of dimensionless control parameters b = 8.5,
d = 13/6, and ∆yclust = 1/6 has been used in all cal-
culations. These values have been found in reference [22]
by matching the theory with experimental data from Ger-
man highways [9]. The stationary value of r (the relative
part of congested cars) depending on the dimensionless
density c is shown in Figure 1 (the upper picture). Similar
results for 1/s (s is the average cluster size) also are shown
here (the lower picture). In this figure the analytical so-
lutions in the limit lim

p→0
lim
M→∞

(first the limit M → ∞ is

found at a given p > 0), are shown by thick solid lines.
The obtained analytical results in this limit clearly shows
the existence of three different regimes of traffic flow, like
in the one-cluster model [21,22], i.e., free flow of cars at
small densities (c < c1), congested traffic or coexisting
(cluster) phase at intermediate densities (c1 < c < cjump),
and highly viscous overcrowded homogeneous state at high
densities (cjump < c < cclust).

It is evident that there is a breakpoint at the first criti-
cal density c = c1, and spontaneous formation of infinitely
large clusters takes place at c > c1. This phenomenon
can be understood in analogy with the formation of liq-
uid droplets in supersaturated vapour [1]. The singularity
appears only if p → 0, whereas at finite values of p there
is no sharp phase transition in vicinity of c = c1, which
means that in this case our multi-cluster model behaves
in a qualitatively different way as compared to the one-
cluster model in references [21,22]. This can be seen from
Figure 1 where solutions at p = 0.001 and M → ∞ are
shown by thin solid lines. It is interesting to note that a
qualitatively similar result has been obtained in the cellu-
lar automaton model, i.e., a sharp phase transition is not

Fig. 1. The relative part of congested cars r (the upper pic-
ture) and the inverse value of the average cluster size 1/s (the
lower picture) vs. dimensionless density c at different sizes M
of the system and different values of the stochastic perturba-
tion parameter p. Thin solid line: p = 0.001, M = ∞; thick
solid line: p = +0, M = ∞; dotted line: MC simulation for
p = 0.001, M = 50; the vertical dashed line indicates cjump.

observed if some stochasticity is present [16]. Note that
at a finite p the average cluster size is finite at any den-
sities of cars. In this aspect, the proposed multi-cluster
model provides some realistic description of the car dis-
tribution over a very long road with many jams, i.e., in
distinction to the one-cluster model, it allows to predict
the average number of clusters and the average cluster size
in a congested traffic. It is evident that there are two so-
lutions at large densities: that with larger values of r and
s corresponds to the cluster phase, whereas another one
reflects the homogeneous state. Physically, in both cases
there is a large average car density, but the distinguishing
feature of the cluster phase is the existence of blanks in the
dense traffic which in our model are interpreted as frag-
ments of free phase coexisting with car clusters. The dense
homogeneous state is described as a state without large
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Fig. 2. A stochastic trajectory showing the total number of
congested cars n vs. dimensionless time T at the stochastic
perturbation parameter p = 0.001. The size of the system M =
100, and the total number of cars N = 92.

clusters or large-size inhomogeneities, but not as a single
cluster which spreads over the whole road. Two solutions
are present both at p → 0 and at a finite p, which means
that even at finite p values a jump-like (first-order) phase
transition between two different states of the system takes
place. It is suitable to consider the stationary probability
P ∗(n) that the total number of congested cars is n. The
true stationary state of the system at T →∞ is reflected
by that solution which corresponds to the absolute maxi-
mum (located at n ' rN) of P ∗(n). We consider the limit
lim
M→∞

lim
T→∞

, i.e., first the stationary probability distribu-

tion is found at a given M . Physically it means that the
considered time always is large enough to ensure that the
system reaches the most stable state. Following an anal-
ogy with the one-cluster model [21,22], lnP ∗(rN) for both
solutions has the same value at some density cjump where
the jump-like phase transition takes place. We do not have
an exact and rigorous result for cjump in our model. How-
ever, we believe that the value cjump ' 0.796 extracted
from the one-cluster model and shown in Figure 1 by ver-
tical dashed lines represents a reasonable estimate for our
multi–cluster model. The existence of jump at c ' 0.796
is confirmed by the results of MC simulation shown in
the figure by dotted line. The simulation results refer to a
finite-size system with M = 50 and p = 0.001 and reflects
the values of r and 1/s obtained by an averaging of r and s
over a time interval T = 200 000 to 500 000 with the initial
condition n = N and Ncl = 1. There is a principal prob-
lem to obtain adequate stationary results in the vicinity
of cjump by MC simulation of remarkably larger systems,
since the time necessary for reaching the stable state of
the system (if one starts from the metastable state) is too
large. In fact, during a very long time the system stays in
that state (homogeneous or cluster-phase) from which the
simulation is started, and switchings between the states

0 400 800 1200
T

0

200

400

600

800

1000

n

Fig. 3. Stochastic trajectories showing the total number of
congested cars n vs. dimensionless time T starting with free
flow (the thin line) and with large cluster (the thick line) at
p = 0.001, M = 3 000, and N = 1 000. The horizontal dashed
line denotes the theoretical average value 724.5 predicted from
calculations at M →∞.

occur very seldom. A specific stochastic trajectory, reflect-
ing the time evolution of n, where a switching from ho-
mogeneous state to the cluster-phase state occurs in the
system with M = 100 and N = 92 is shown in Figure 2.

We have simulated stochastic trajectories for a large
system with M = 3 000 and N = 1 000 to show the time
evolution of the system and convergence to the stationary
state described by equations in Section 3. In Figure 3 the
time evolution of the total number of congested cars n is
shown by stochastic trajectories starting from two differ-
ent initial conditions, i.e., from free flow (n = 0, Ncl = 0)
and from a total congestion (n = N = 1 000, Ncl = 1).
In Figure 4 the same results are shown for the number
of clusters Ncl. It can be seen from Figures 3 and 4 that
irrespective to the initial conditions the total number of
congested cars n (Eq. (4)) relatively fastly, as compared
to Ncl, converges to values oscillating around the average
value < n >= rN ' 724.5 consistent with the theoretical
prediction (17) for an infinitely large system shown in Fig-
ure 3 by dashed line. The same is true for the total number
of clusters Ncl (Eq. (3)) with the only difference that the
convergence is much slower and oscillations around the
average value 〈Ncl〉 = rN/s ' 14.13 (the dashed line in
Fig. 4) are larger. These results for Ncl confirm our theo-
retical prediction based on equation (15) that large clus-
ters of size k ∼ M , where M → ∞, dissolve and, finally,
the distribution (14) over cluster sizes is reached.

It is usually accepted to represent the traffic flow data
in the flux-density diagram or the fundamental diagram
of traffic flow. In Figure 5 the fundamental diagram is
shown for an infinitely large system. It has been demon-
strated in reference [22] that the fundamental diagram
represented by equations (30) and (31) with the actually
used values of control parameters is in a good agreement
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Fig. 4. Stochastic trajectories showing the total number of
clusters Ncl vs. dimensionless time T starting with free flow
(the upper picture) and with large cluster (the lower picture) at
p = 0.001, M = 3 000, and N = 1 000. The horizontal dashed
line denotes the theoretical average value 14.13 predicted from
calculations at M →∞.

with experimental data. We have depicted this diagram,
corresponding to the limit lim

p→0
lim
M→∞

, by thick solid lines.

At c2 < c < cclust there are two possible solutions,
shown by two solid lines, one of which corresponds to the
stable stationary state of the system. At c2 < c < cjump

the stable state (the cluster phase) is reflected by the up-
per line, whereas at c > cjump the stable state (highly
viscous homogeneous phase) corresponds to the lower line.
Our estimate for the critical density c = cjump is indicated
by an arrow. Continuations of the solutions (30) and (31)
to the regions c1 < c < c2 and 0 < c < c1, respectively, are
shown by dashed lines. We have depicted by thin solid line
the solution at p = 0.001 and M → ∞. In this case the
jump at c = cjump is so small that practically it is not seen.
It is evident from the figure that the flux j(c) represented
by the thin solid line has a smooth maximum at c ≈ c1,
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Fig. 5. The fundamental diagram of traffic flow (flux vs. den-
sity) for an infinitely long circular one-lane road at different
values of the stochastic perturbation parameter p. Thick solid
lines (continued by dashed lines): p = +0; thin solid line:
p = 0.001; The jump between two different states of the system
occurs at c = cjump indicated by an arrow.
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Fig. 6. The finite size effect on the flux-density diagram. Re-
sults of Monte-Carlo simulations averaged over a time interval
T = 200 000 to 500 000 at p = 0.001 and different sizes of the
system: M = 30 (curve 1), M = 50 (curve 2), M = 100 (curve
3), and M = 300 (curve 4). The thicker smooth line, calculated
from analytical equations, corresponds to p = 0.001, M →∞.

as consistent with the absence of sharp phase transition
at c = c1 for finite p values. At p = +0 three different
regimes of traffic flow can be distinguished as discussed in
the beginning of this section.

We have revealed and have shown in Figure 6 an inter-
esting finite-size effect on the fundamental diagram, which
has not been observed in the one-cluster model. In this
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figure the solution for an infinite system (29) at p = 0.001
is depicted by a smooth relatively thicker solid line. By
thin solid lines, results of MC simulation are shown for fi-
nite roads of several lengths (M = 30, 50, 100, and 300 at
p = 0.001) obtained by averaging (27) over a time interval
T = 200 000 to 500 000. As we see, in smaller systems the
average flux is remarkably increased at densities slightly
above c1. We think that this is due to the stochastic fluc-
tuations which are more important in finite systems as
compared to the case M →∞ where the stationary clus-
ter distribution (14) is determined and does not fluctuate.
Remarkably larger values of the average flux for small sys-
tems at densities slightly above c1 correlate with smaller
values of r in this case, as evident from Figure 1 (the
dotted line). It can be seen from Figure 6 that the flux-
density diagram obtained by MC simulation converges to
the result (29) for an infinite system, as M is increased.

6 Conclusions

In references [21–23] the stochastic theory of freeway traf-
fic has been proposed and developed based on a single-
cluster model for a one-lane circular road. Here we have ex-
tended this approach and have proposed and solved a more
realistic model allowing the coexistence of many clusters.

Analytical equations have been derived for calculation
of stationary cluster distribution and corresponding to this
the average cluster size, the relative part of congested cars,
and the stationary average flux for an infinitely large sys-
tem of interacting cars. Completely analytical solutions
have been obtained in the limit of an infinitely small value
of the stochastic perturbation parameter p. It has been
shown that spontaneous formation of large car clusters
occurs at some critical density. The critical behaviour of
the order parameter r (the relative part of congested cars)
is described by the critical exponent β = 1, like in the
Nagel-Schreckenberg cellular automaton model. At finite
values of p, the behaviour of the system near the critical
density c1 is qualitatively different. In distinction to the
case p→ 0, in this case there is no sharp phase transition
with spontaneous formation of infinitely large clusters at
c = c1. The average cluster size always is finite. Never-
theless, even at finite p there is a jump-like phase tran-
sition from the cluster phase to the homogeneous state
at large densities like in the one-cluster model studied
before [21,22].

Monte-Carlo simulations have been performed for fi-
nite roads showing the time evolution (stochastic trajecto-
ries) of the system to the stationary state. The simulation
results for large system (M = 3 000) are in agreement with
the analytical results for an infinite system. It has been
shown that for small systems (M = 30, 50) the average
flux of cars is remarkably increased at densities slightly
above c1 due to finite-size effects.

In conclusion, the developed multi-cluster model is
helpful in understanding and interpretation of real traf-
fic. In addition to the one-cluster model studied before, it
allows to describe a real distribution of clusters (jams) of
different sizes in a case of a long road with many jams.
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